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Abstract

Frank-Read sources are among the most important examples of dislocation sources
in crystals, and their operation facilitates dislocation multiplication and hence yield
and plastic flow. Iron is known to become highly elastically-anisotropic as the α−γ
transition at 912◦C is approached, a temperature regime of critical importance for
emerging technologies such as fusion and next-generation fission reactors. Using
dislocation dynamics simulations based on anisotropic linear elasticity theory, we
show that the isotropic elastic approximation leads to large errors in the activation
stress of Frank-Read sources in iron at high temperatures. The critical stresses
obtained from anisotropic elasticity are very different from the isotropic calculations
and vary significantly between orientations. In particular, the increased variation
of the dislocation energy with orientation leads to certain source configurations
becoming operational at very low applied stresses, a result which is incompatible
with isotropic elasticity, and is consistent with the very low yield stresses observed
experimentally in α-Fe at high temperatures.

Key words: anisotropic elasticity, dislocation dynamics, yield strength,
Frank-Read sources, alpha-Iron.

1 Introduction

In three dimensions, the linear elastic behavior of a crystal with cubic symme-
try can be encoded by three independent parameters, for example the elastic
moduli C12, C44 and C ′ = (C11 −C12)/2, where C12 describes the relation be-
tween normal stress and strain components, and C44, C

′ are two independent
shear moduli. If the crystal is assumed to be isotropic, the two shear moduli
coincide, and the mathematical machinery required to perform calculations
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is greatly simplified, particularly where dislocations are concerned [1]. As a
result of this improved tractability, the vast majority of the existing literature
on elasticity-based simulation of dislocations utilizes the isotropic approxima-
tion (see for example [2, 3, 4] and references therein). However, most crystals
are elastically anisotropic to some extent, and for the technologically impor-
tant case of iron the anisotropy ratio A = C44/C

′ reaches almost 8 as the
temperature approaches that of the α − γ transition at 912◦C [5]. If we wish
to study the elastic and plastic behavior of, for example, ferritic and marten-
sitic steels for advanced nuclear fission and fusion applications, the isotropic
approximation to elasticity theory does not apply.

In this paper, we report dislocation dynamics (DD) simulations of one of the
most important features of microstructure in metals: the Frank-Read (FR)
source [6]. By allowing dislocations to multiply, these sources, amongst other
mechanisms, give rise to yield and plastic flow. The empirical elastic moduli we
use [5] correspond to iron at 900◦C , a regime of great importance for nuclear
technology, and one where the anisotropy of the lattice plays a dominant rôle.

In the next section we turn our attention to the FR source itself, and develop
an algorithm to define and compute the critical stress required to initiate
dislocation multiplication for various configurations of source, in each of the
four principal slip systems in the body-centered-cubic (bcc) lattice. Next we
present our results, and compare them with those obtained from DD sim-
ulations using Voigt- and Reuss-averaged isotropic elastic moduli, and from
an analytical line tension model. We also discuss the shapes adopted by the
sources as they bow out, and explain the unusual cusped configurations we
observe in terms of the thermodynamic instability of certain dislocation ori-
entations in highly anisotropic bcc crystals [7, 8]. The critical stress, and the
behavior very close to criticality, varies significantly across the FR source con-
figurations we consider, and differs both qualitatively and quantitatively from
the isotropic approximations.

2 Simulation Methodology

Our code is based on an extension of the DD simulation package ParaDiS[9]
to account for anisotropic elasticity [10, 11]. The dislocation structure is dis-
cretized, represented by a network of nodes connected by straight segments.

A FR source [6] starts out as a segment of dislocation line pinned between
two points. The pinning can be caused by interactions with other dislocations,
impurities or precipitates. Under an appropriate applied stress the segment
will bow out, increasing the elastic energy stored in the crystal, leading to a
stressed equilibrium configuration. Once a critical stress (defined below) is ex-
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Fig. 1. Dislocation configuration. Segments BC, DC and DA are fixed. Only nodes
inside segment AB are allowed to move, with nodes A and B fixed too. The glide
plane of segment AB is perpendicular to the plane of rectangle ABCD. Initially,
AB is a straight segment and |AD| is four times |AB|.

|x| > xmax
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Fig. 2. Criteria for determining the dislocation stability: when xmax is reached, the
dislocation is defined as unstable; when the maximum velocity of the nodes is lower
than 10−5Å/s, the dislocation is stable.

ceeded, the bowed-out segment becomes unstable, and there no longer exists
an equilibrium configuration. The segment loops back on itself, whence sec-
tions annihilate and pinch off. This results in a dislocation shear loop, which
may continue to expand, and a fresh pinned segment, which may begin the
process again. This mechanism in principle allows unlimited plastic displace-
ment, provided the stress is gradually increased above the critical threshold
(in practice, the expanding loops are likely to encounter obstacles, which may
lead to the formation of pile-ups [12, 13]). The critical stresses for various
configurations of FR sources will be intimately related to the yield stress of
the crystal, and their calculation is hence of interest.

The initial dislocation configuration in our simulations is a rectangle with
three sides that are fixed, see Fig. 1. The stress field acting on each dislocation
segment due to the rest of the loop is calculated by summing contributions
from every segment (including itself), using for each an expression for the field
due to an isolated finite segment [10, 11]. Because the stress field of a finite
dislocation segment is not unique, we add three segments to the Frank-Read
segment AB to form a closed loop. The segments BC, CD and DA are defined
to be sessile so that we can focus on the behavior of the source segment AB
under stress. As the stress increases, the dislocation bows out in the plane
orthogonal to ABCD.

In order to numerically define the critical stress, we have to choose a criterion
for dislocation stability in DD simulations. As the applied stress increases,
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the dislocation starts to bow out and its line length increases. The dislocation
becomes unstable when the line normal to the initial segment is crossed, as
shown in Fig. 2. Numerically, this happens whenthe lateral excursion of the
line exceeds xmax. This definition should not depend on xmax provided xmax

is large enough. We used two different values of xmax of 1.5 x0 and 1.7 x0,
where x0 is the initial dislocation length, and the predicted critical stress
remains the same. When a dislocation reaches a stable configuration under an
applied stress, its velocity vanishes. We compute the maximum velocity on the
dislocation nodes, and choose the criterion that if this is less than 10−5Å/s,
the dislocation is stable.These two criteria ensure that the values of the critical
stress for all Frank-Read configurations are computed consistently.

3 Results

We determine the critical stress required to operate FR sources in ten con-
figurations occurring in the bcc lattice: an initial edge and an initial screw
orientation for each of the four principal bcc slip systems, namely [100](001),
[100](011), 1

2
[111](01̄1), 1

2
[111](112̄), plus two additional b = [100] mixed con-

figurations which will be discussed later. The different cases studied are sum-
marized in Table 1. At fixed initial length L = 1000 a0, where a0 is the lattice
constant, we study how the shape of the dislocation and its critical stress
vary as a function of its initial Burgers vector, line direction and glide plane.
In these simulations, the values of the elastic constants are C11 = 122GPa,
C12 = 99GPa and C44 = 13.3GPa, corresponding to α-Fe at 900◦C [5]. The
core cut-off parameter is equal to the norm of the Burgers vector b. Effective
isotropic moduli were calculated using both Voigt (µ ≈ 64GPa and ν = 0.29)
and Reuss (µ ≈ 27GPa and ν = 0.40) averages. (See [10] for a detailed dis-
cussion of the various isotropic averaging procedures).

3.1 Dislocation shapes after bow out

The shapes of the dislocations just below the critical stress are shown in Fig. 3.
For cases 5-10, we have added a core energy to smooth out the dislocation
shapes as discussed in [10]. Firstly, in all cases the shape assumed by the
bowing dislocation is very different from the smooth oval shapes predicted
by isotropic elasticity. Sharp corners in agreement with those predicted by
previous studies are observed [8, 14], and the bowing segments approximately
describe segments of the equilibrium curves for the shear loops studied in [10].
Particularly in the b = [100] cases, the sharp corners effectively allow the
expanding sources to avoid high energy dislocation orientations, so the expan-
sion is achieved without the requirement to generate these (see Fig. 3). This is
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Table 1
Eight Frank-Read sources corresponding to an initial screw and edge segment in
each of the four principle bcc slip systems (cases 1-8) plus two b = [100] mixed
configurations (see text). Burgers vector b, glide plane normal n and line direction
ξ.

Case b n initial ξ character

1 [100] [011] 1√
2
[011̄] edge

2 [100] [011] [100] screw

3 [100] [001] [01̄0] edge

4 [100] [001] [100] screw

5 1

2
[111] [011̄] 1√

6
[2̄11] edge

6 1

2
[111] [011̄] 1√

3
[111] screw

7 1

2
[111] [112̄] 1√

2
[1̄10] edge

8 1

2
[111] [112̄] 1√

3
[111] screw

9 [100] [011] 1√
3
[111̄] mixed

10 [100] [001] 1√
2
[110] mixed

unlike the case where the crystal is isotropic, or only mildly anisotropic, when
sharp corners cannot develop since they are not stable minimizers of the elas-
tic energy. The emergenvce of these thermodynamically-unstable orientations
are characteristic of large elastic anisotropy[7, 8]. It should be noted that,
once the critical stress is reached, no equilibrium solution exists and system
becomes essentially dynamic in nature. However, the self force which acts to
orient the segments in the lowest energy directions [14] still operates, and the
sharp corners remain on moving dislocations in our DD simulations..

The b = [100] cases 1,2 and 3,4 are fairly symmetric between the initial edge
and screw cases, particularly for 1,2. This is because the lowest energy con-
figurations actually lie in mixed orientations [8], and the bow-out proceeds
via the extension of the segment along these directions. The opposite is true
for cases 5,6 and 7,8 where b = 1

2
[111]. At high anisotropy, the 1

2
[111] screw

becomes very low energy, and the FR sources which start as a pinned edge
can easily expand by extending dislocation segments along screw directions.
The FR sources which begin as a pinned screw, however, must generate higher
energy edge segments in order to expand, and the shapes they adopt reflect
this screw-edge asymmetry.
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(e) Case 5 (f) Case 6 (g) Case 7 (h) Case 8

(i) Case 9 (j) Case 10

Fig. 3. Shape of Frank-Read sources just below the critical stress.

3.2 Critical stresses

We computed the critical stress for the configurations defined in Table 1 us-
ing isotropic and anisotropic elasticity, using both ParaDiS and an analytical
anisotropic line tension model. The results are shown in Fig. 4, with the defi-
nition that the (scalar) critical stress is the constant σ such that

σ̂ = σ

(

b

|b|
⊗

n

|n|
+

n

|n|
⊗

b

|b|

)

,

with b the Burgers’ vector and n the glide plane normal vector. This allows the
dimensional scalar magnitude σ to be separated from the geometry-dependent
tensorial part of the stress. Firstly consider the isotropic results in Fig. 4(a).
The critical stress required to activate these FR sources is fairly uniform across
the orientations, and scales ∼ µ|b|/L where L is the initial length of the pinned
segment, b is the Burgers’ vector and µ the shear modulus Cases 1–4 are
shifted slightly higher relative to cases 5–8 simply because |[100]| > |1

2
[111]|.

The sources which are initially pinned in the edge orientation (2,4,6,8) have
a lower critical stress than the screws (1,3,5,7) since to operate they must
generate screw segments, which are always lower energy in an isotropic crystal.

The situation is markedly different in the anisotropic case, which is charac-
terized by a much larger variation across the orientations: a factor of four
between the lowest and highest critical stresses as seen in Fig. 4(b). Several
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Fig. 4. Calculated critical stress for the different initial conditions of Table 1
(L = 1000 a0). (a) Critical stress comparison between full anisotropic elasticity
and the Reuss and Voigt isotropic averages. (b) Comparison between the analytical
anisotropic line tension model and the full anisotropic DD method.

features are noteworthy: i) the b = [100] cases have a fairly uniform critical
stress across cases 1–4. This is due to the fact that the lowest energy orienta-
tion is a mixed configuration, and so the stress required to operate source does
not depend strongly on the initial segment orientation, since the sharp corners
permitted at this level of anisotropy allow the source to expand by generat-
ing dislocation line in this direction only. This is borne out by the additional
mixed cases 9 and 10, which have very similar critical stresses, and show that
for the b = [100] cases, the initial orientation is largely inconsequential. ii)
The opposite is true for the b = 1

2
[111] cases, where a large energy difference

exists between edge and screw, and the corners which appear do not allow the
source to circumvent the screw-edge asymmetry. When the initial segment is
pinned in a screw orientation (6,8), the source has no choice but to generate at
least some energetically-costly edge segments, requiring a much greater stress
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than the initially-edge case, where screw arms can be extended very easily. iii)
Comparing the anisotropic results with the isotropic ones in Fig. 4(a), we find
a lower critical stress on average than for the Voigt averages, and a higher one
on average than for the Reuss averages. This is consistent with the fact that
Voigt averages in general overestimate characteristic stresses and Reuss aver-
ages underestimate them. The analytical line tension results are determined
using the method of Refs.[8, 15], and contain some arbitrariness in the choice
of the integration cutoffs (we use a0 for the inner cutoff and 1000a0 for the
outer, which are the only lengthscales in the problem). This arbitrariness en-
ters only logarithmically and the results are in excellent agreement, with the
exception of cases 6 and 8. The differences in these cases can be attributed to
the choice of criterion for yield: in the line tension model, the critical stress is
defined as the stress at which the Frank-Read source bows into a shape that
is exactly half of the equilibrium shear loop. In other words, the line tension
model predicts the half-loop to be the critical configuration for Frank-Read
source activation [15]. Whilst this is adequate for some cases, the more realis-
tic criterion we use for the numerical calculations (i.e. the stress above which
no stable configuration exists) demonstrates that in some cases, the disloca-
tion can remain stable even when it has already gone beyond the half-loop
configuration, due to the long range elastic interactions not captured in the
line tension model.n. This is clear from cases 6 and 8 in Fig. 3.

Previous work from the same authors [10] has studied the equilibrium shape
of dislocation shear loops in anisotropic elasticity and has computed their
energy as a function of orientations, loop radius and temperature. Although
the equilibrium shapes exhibit cornered shapes similar to those observed in
the Frank-Read sources, the critical stress value cannot be deduced from the
equilibrium shear loop shape calculations. There is no obvious relation between
the energy of a loop, given in Ref. [10] and the critical stress obtained in Fig. 4.
The energy of a loop averages the screw and the edge components of the
Frank-Read sources and is almost constant for a given Burgers vector. In our
calculations, the critical stress is strongly dependent on the initial orientation
of the Frank-Read segment.

4 Conclusions

FR sources are amongst the most important microstructural features of met-
als, and their properties play a large rôle in governing mechanical behavior
such as yield and plastic flow. Our simulations demonstrate the importance of
including elastic anisotropy when modeling high temperature iron, and since
the anisotropic behavior can be traced back to the proximity of the α−γ tran-
sition, the results will also apply to a greater or lesser degree to ferritic steels.
The stress required to operate an FR source is strongly dependent on its Burg-
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ers’ vector and orientation, and in particular those orientations which provide
plastic displacement by extending b = 1

2
[111] screw segments can operate at

very low applied stresses when the elastic anisotropy is significant. This could
offer a possible explanation for the well known loss of strength suffered by
iron and ferritic steels as the α− γ transition temperature is approached (see
[12, 13] and references therein). In addition to these quantitative differences,
striking sharp-cornered configurations arose in the simulations, particularly
noticeable in the b = [100] cases, in agreement with recent analytical re-
sults, and transmission electron microscope observations [16], concerning the
instability of certain dislocation orientations at high anisotropy. None of these
effects can be captured by any isotropic approximation in three dimensions,
since the limitation to two independent moduli allow only the overall stress
scale (set by µ) and the edge-screw energy difference (set by ν) to be adjusted.
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